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Abstract

An approach to estimate eigenfrequencies and damping ratios of a vibrating system, in time domain from output data

only, is studied. This approach is based on the interpretation of histograms obtained from the poles of Padé approximants.

Using properties of the asymptotic location of poles of Padé approximants to rational functions, different subsets of

eigenfrequencies and damping ratios are obtained and their histograms plotted. Numerical and experimental examples are

presented.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Modal parameter identification is used to identify those parameters of the model which describe the
dynamic properties of a vibrating system. Classical modal parameter extractions usually require measurements
of both: the input force and the resulting response in laboratory conditions. However, for some practical
reasons, when operational structures are subjected to random and unmeasured forces such as wind, waves,
traffic, shocks, or aerodynamics, modal parameters must be extracted from response-only data. The problem
of output-only modal analysis has gained considerable attention in recent years and several different
approaches to estimate modal parameters from output-only data have been proposed. They include peak-
picking from power spectral density functions, autoregressive moving average models, subspace techniques
and wavelet transform [1–10]. Output-only methods offer undeniable advantages: they can be applied without
interrupting the structure regular service during the experimental tests; they require no special excitation
equipment; it is not necessary to know or measure the excitation. The modal parameters play a relevant role in
structural monitoring and inspection. In fact, changes in modal parameters may reflect changes in local
mechanical properties due to damaging phenomena underway.

In this paper, a statistically procedure for the estimation of natural frequencies and damping parameters of
structural systems under white-noise input is shown. The procedure is based on the computation of Padé
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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approximants to the Z-transform of a noisy data sequence [11–14]. Some theoretical properties of poles of
Padé approximants to noisy rational functions are then developed.

The paper is organized as follows. First, a model of a vibrating system and its state space representation are
given. The poles of the system are related to covariance matrices and modal parameters are obtained from
these poles. Since the order of the state space model, or the number of modes, is unknown, we increase this
order. Then, the number of Padé approximants increases, and spurious poles appear. We propose statistical
methods to eliminate such spurious modes and to determine the true modes. A numerical example and an
experimental test are then presented and the paper is briefly concluded.
2. Modelling a vibrating structure

We consider a structure excited by an unknown white-noise input. Our objective is to determine the modal
parameters, from the time response delivered by the output of accelerometers in contact with the structure.

For an n0-degree of freedom vibratory system, the equation of motion can be expressed as

M0
€xðtÞ þ C0

_xðtÞ þ K0xðtÞ ¼ ZðtÞ, (1)

where M0, C0 and K0 are the system mass, damping and stiffness matrices (n0 � n0) respectively; €xðtÞ, _xðtÞ and
xðtÞ are (n0 � 1) vectors of acceleration, velocity and displacement and ZðtÞ the (n0 � 1) unmeasured excitation
vector, which is a white-noise sequence. A state-space model can be formed in lieu of the model given by Eq.
(1) as

_xðtÞ ¼ ~AxðtÞ þ ~BZðtÞ, (2)

where xðtÞ is the n ¼ 2n0 dimensional state vector:

xðtÞ ¼
xðtÞ
_xðtÞ

" #

and ~A, ~B are given by

~A ¼
0 I

�M�1
0 K0 �M�1

0 C0

" #
; ~B ¼

0

M�1
0

" #
.

The response of the dynamic system is measured by the r output quantities in the output yðtÞ, using
accelerometers. An ðr� 1Þ vector output equation, called the observation equation, can be written as [2] €x

yðtÞ ¼ Ha
€xðtÞ ¼ HaM�1

0 ½�K0xðtÞ � C0
_xðtÞ þ ZðtÞ� or yðtÞ ¼ CxðtÞ þDZðtÞ, (3)

where Ha is the output influence matrix ðr� n0Þ for acceleration. This matrix specifies which points of the
system are observed from accelerometers. C is the ðr� n0Þ output influence matrix for the state vector xðtÞ

given by C ¼ HaM�1
0 ½�K0 � C0� and D is an ðr� n0Þ direct transmission matrix given by D ¼ HaM�1

0 . Eqs.
(2) and (3) constitute the continuous time state space model of a dynamical system. After sampling with
constant period Dt and transformation of the 2n0 first-order differential equations (2) and (3) into a discrete
time equation, we obtain the following discrete time state-space model, where a process noise due to
disturbances and modelling inaccuracies is added [2,4]

xkþ1 ¼ Axk þ wk, (4)

where xk represents the discrete unobserved state vector of dimension n ¼ 2n0; A ¼ e
~ADt is the ðn� nÞ discrete

time transition matrix; wk is given by wk ¼
R Dt

0 e
~As ~BZðt� sÞdsþ w0k with w0k the process noise. The discrete time

observation equation with measurement noise is given by

yk ¼ Cxk þ vk, (5)

where vk ¼ DZk þ v0k and v0k is the measurement noise.
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3. Estimating the system’s poles from covariance matrices

For any i40 we have the ðr� rÞ covariance matrix Ri ¼ E½ yk yT
k�i � ¼ CAiPCT with P ¼ E½ xk xT

k �,
where E denotes the expected value operator. It is well known that there exists a set of scalars a0, a1,y, an�1,
such that [2,7]

An ¼ a0I þ a1Aþ � � � þ an�1An�1. (6)

Substituting Eq. (6) into Ri for i ¼ nþ 1, nþ 2,y, 2n we get a set of equations:

Rnþ1 ¼ a0R1 þ a1R2 þ � � � þ an�1Rn,

Rnþ2 ¼ a0R2 þ a1R3 þ � � � þ an�1Rnþ1,

..

.

R2n ¼ a0Rn þ a1Rnþ1 þ � � � þ an�1R2n�1 ð7Þ

or in matrix form HðnÞaðnÞ ¼ hðnÞ where HðnÞ, aðnÞ and hðnÞ are, respectively, matrices ðrn� rnÞ, ðrn� rÞ and
ðrn� rÞ :

HðnÞ ¼

R1 R2 : Rn

R2 R3 : Rnþ1

: : : :

Rn Rnþ1 : R2n�1

2
66664

3
77775; aðnÞ ¼

a0Ir

a1Ir

:

an�1I r

2
6664

3
7775; hðnÞ ¼

Rnþ1

Rnþ2

:

R2n

2
6664

3
7775.

Let us denote the ith column of HðnÞ by ri. We get the linear system

wa ¼ g, (8)

where w, a and g are matrices ðnr2 � nÞ, ðn� 1Þ and ðnr2 � 1Þ given by

w ¼

r1 r1þr : r1þðn�1Þr

r2 r2þr : r2þðn�1Þr

: : : :

rr r2r : rnr

2
6664

3
7775; a ¼

a0

a1

:

an�1

2
6664

3
7775; g ¼

r1þnr

r2þnr

:

rrþnr

2
66664

3
77775.

The values a0, a1,y, an�1 are obtained as the least-squares solution of Eq. (8) and the system’s poles are
estimated as the roots of the characteristic polynomial [7]

mn ¼ a0 þ a1mþ � � � þ an�1mn�1 (9)

and are pairwise conjugate. It follows from the consistency of the values aj and the continuity of the roots of a
polynomial, as functions of its coefficients, that the roots of Eq. (9) are consistent estimates of the system’s
poles. The natural eigenfrequencies f j and damping ratios zj of the vibrating system are then given by [3]

lj ¼ log ðmjÞ=Dt; f j ¼ jljj=2p; zj ¼ �ReðljÞ=jljj with j ¼ 1; . . . ; n0.

Only a sequence of observations fykg is measured and known. The order n of the system or equivalently the
number of modes n0 in a frequency band of the vibrating system is unknown. Our objective is to increase
progressively n, to form w and g and to obtain a by resolution of Eq. (8). The system’s poles are then estimated
by solving the characteristic polynomial. However if n increases, spurious poles or spurious modes appear and
our objective is to differentiate these spurious poles or spurious modes from real modes of the vibrating
system. The idea is the following. It is well known that to apply the characteristic polynomial method is
equivalent to compute the Padé approximants to the Z-transform of the theoretically ‘‘infinite’’ data sequence
fykg. More specifically, the poles of the ½n� 1; n� Padé approximants are the roots mj of the characteristic
polynomial. Therefore, studying the locus of the poles of the Padé approximants gives information about the
location of mj . The basic mathematical tool is provided by a theorem due to Gammel and Nuttall [12] in the
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framework of the theory of convergence of the Padé approximants, from which it follows that a subset of the
poles of the considered Padé approximants converges asymptotically to mj.

4. Padé approximants

An accelerometer output is modelled as yk ¼ sk þ nk where sk is the signal noiseless and nk denotes the
measurement noise. The nk are independent and identically distributed random variables with zero mean. Let
f ðzÞ denote the Z-transform of the sequence fykg defined by the Laurent power series

f ðzÞ ¼
X1
k¼0

ykz�k. (10)

From the coefficients in this power series we may compute the rational Padé approximants to the function
f ðzÞ. The Padé approximant f m;nðzÞ of orders m and n to f ðzÞ is a rational function defined by [11–14]

f m;nðzÞ ¼ P1ðz
�1Þ=P2ðz

�1Þ. (11)

We can write f ðzÞ as

f ðzÞ ¼
X1
k¼0

skz�k þ
X1
k¼0

nkz�k ¼ sðzÞ þ nðzÞ, (12)

where the first term is given by the rational function

sðzÞ ¼
Xn

j¼1

cj

1� zjz�1
. (13)

The zj are the poles of sðzÞ and are equal to the roots mj of the characteristic polynomial, under the assumption
of moderate noise. Indeed, if the noise is moderate, computational experiments and Gammel and Nuttall [12]
show that the Padé approximants converge to sðzÞ inside and outside the unit circle. The asymptotic location
of the poles of the Padé approximant f m;nðzÞ are obtained from the theorem of Gammel and Nuttall [12] and
from papers of March and Barone [13,14]. Let C be a contour not intersecting the unit circle. If C surrounds a
pole zj of sðzÞ and no other poles, the residue of f ðzÞ at the pole zj is

1

2pi

Z
C

f ðzÞdz ¼ cjzj. (14)

If the Padé approximant f m;nðzÞ has h poles inside C denoted by z�1,y, z�h, the residue of f m;nðzÞ at the pole z�j is
c�j z�j and by using the residue theorem we have

RC ¼
1

2pi

Z
C

f m;nðzÞdz ¼
Xh

j¼1

c�j z�j . (15)

Denote now by Cd a closed curve lying inside C such that min jz� ẑjod with z 2 C, 8ẑ 2 Cd, d40, and let C

be a contour not intersecting the unit circle and m ¼ qþ n. Then, given e40, d40 and q 2 Z, there exist an n0
and a contour Cd lying inside C such for all n4n0 the following properties hold:
(a)
 if C surrounds a pole zj of sðzÞ and no other poles, the Padé approximant f m;nðzÞ has at least one pole inside
Cd and jRCd j4jcjzjj � e. Indeed, from the theorem due to Gammel and Nutall [12] we have

f ðzÞ � f m;nðzÞ
�� ��oe, (16)

so that f ðzÞ � f qþn;nðzÞ
�� ��o2pe=LCd where z 2 Cd and LCd is the length of the contour Cd.

We obtain then

e4
1

2p

Z
Cd

jf ðzÞ � f qþn;nðzÞj jdzj
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and it follows that

e4
1

2p

Z
Cd

ðf ðzÞ � f qþn;nðzÞÞdz

����
����

so that

e4
1

2pi

Z
Cd

f ðzÞdz

����
����� 1

2pi

Z
Cd

f qþn;nðzÞdz

����
���� ¼ jcjzjj � jRCd j

and we have jRCd j4jcjzjj � e.

(b)
 if no poles of sðzÞ lie inside C we havejRCd joe. Indeed we have

1

2pi

Z
Cd

f ðzÞdz ¼ 0,

so that using the theorem due to Gammen and Nuttal

jRCd j ¼
1

2pi

Z
Cd

f qþn;nðzÞdz

����
����oe.

The first property indicates that Padé poles approximate the polar singularities zj of sðzÞ inside the
unit circle. Hence, if we compute many estimates of the poles m̂j by varying the order n of the system, then
for n large enough, the computed Padé poles will give rise to clusters containing spurious poles in the
complex plane, around the poles of interest mj. However, from the two properties, it follows that the
residues of spurious poles can be expected to be much smaller than the residues of the Padé poles. The
spurious poles may then be eliminated by looking at the estimated amplitudes of the residues. Numerical
and experimental examples show the effectiveness of the procedure in the following section.
5. Application to simulated results

In order to show the usefulness of the Padé approximants theory in modal analysis a simulation is
performed with a 3 degrees of freedom system viscously damped. In our simulation we have considered
academically the example of a vibrating system represented by masses and springs:

M0 ¼ 0:13 0 0; 0 0:2 0; 0 0 0:15
� �

,

K0 ¼ 30 �10 0; �10 15 �5; 0 �5 12
� �

,

C0 ¼ 0:1M0 þ 0:01K0.

All masses are randomly excited with a zero-mean white noise. The number of data points per channel is 1000
and the sampling time is Dt ¼ 0:15 s. The exact natural frequencies and damping coefficients of the vibrating
system are: f 1 ¼ 0:957Hz; f 2 ¼ 1:564Hz; f 3 ¼ 2:531Hz; z1 ¼ 0:0384; z2 ¼ 0:0542; z3 ¼ 0:0826. We then
compute the Padé approximants and their poles for n ¼ 1, 2,y, 40. The time response of a mass is given in
Fig. 1. The poles obtained from Eqs. (8) and (9), using simultaneously three time responses of masses, are
plotted in Fig. 2, where the arrows correspond to the true poles. It can be noted that a lot of clusters appear
that do not correspond to any of the true poles. The eigenfrequencies histogram is plotted in Fig. 3 before
selection. It is very difficult, from this histogram, to determine the true eigenfrequencies of the vibrating
system. By interactively choosing a number of classes such that enough resolution is allowed and a threshold,
all classes whose values are below the threshold are discarded. To choose the number of classes and a
threshold one can plot the power spectral density function of the process and select the frequency intervals
where most of the power is concentrated. Then, a value of the number of classes and a threshold are chosen, all
the poles in the discarded classes are removed and the histogram of the good poles is computed as shown in
Fig. 4. This figure shows the histogram of eigenfrequencies selected. From this figure three frequencies,
corresponding to the natural frequencies of the vibrating system, are evident.

The same procedure is applied to determine the true damping coefficients. Figs. 5 and 6 show the histogram
of damping coefficients before and after selection. Again three damping coefficients corresponding to the exact
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Fig. 1. Acceleration time history for the numerical example.
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Fig. 2. Computed poles for the numerical example.
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damping coefficients of the system are evident in the histogram plotted in Fig. 6. Consider now the case of
fairly noisy signals: the simulated data was corrupted by zero mean Gaussian noise. The signal to noise ratio,
in terms of rms values, was equal to 10 dB. Figs. 7 and 8 show that the procedure to obtain eigenfrequencies
and damping coefficients gives good results with noisy signals. However, if the signal to noise ratio is weak
(smaller than 5 dB) the noise affects the results significantly and it is very hard to determine eigenfrequencies
and damping ratios. The method failed only in the case of very noisy data (SNRo5 dB).

6. Application to experimental results

The estimation of eigenfrequencies and damping coefficients is now applied to a mechanical structure of
three beams, in laboratory as shown in Figs. 9 and 10. The particularity of this mechanical system is the
presence of coupled modes in a frequency band [30–40Hz]. Three accelerometers are placed on points 1, 3 and
5. Three excitations, which are white-noise, are applied on points 2, 4 and 6. The signals are sampled at rate
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Fig. 4. Histogram of eigenfrequencies after selection for the numerical example.

Fig. 5. Histogram of damping coefficients before selection for the numerical example.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

40

frequencies

Fig. 3. Histogram of eigenfrequencies before selection for the numerical example.
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Fig. 7. Histogram of eigenfrequencies after selection for the noisy signal (SNR ¼ 10 dB).

Fig. 6. Histogram of damping coefficients after selection for the numerical example.
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Fig. 8. Histogram of damping coefficients after selection for the noisy signal (SNR ¼ 10 dB).

J. Lardies / Journal of Sound and Vibration 292 (2006) 571–582578



ARTICLE IN PRESS

4
3

2

1

5
6

Fig. 9. Plan view of the X-beam.

Fig. 10. Experimental X-beam.
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Dt ¼ 1:953ms and 1500 points are collected for each channel. Fig. 11 shows the time response obtained from
one accelerometer. We obtain similar plots if we consider other accelerometers. Figs. 12–14 show the power
spectral density response obtained from accelerometers. It is very difficult to extract modal parameters from
these plots. Using the time response of all accelerometers and applying the Padé approximation method
presented in this paper, the estimated natural frequencies of this mechanical system are f 1 ¼ 34:3Hz, f 2 ¼

35:3Hz and f 3 ¼ 36:4Hz. They are obtained from the histogram of eigenfrequencies after selection presented
in Fig. 15. The corresponding damping coefficients obtained from the histogram plotted in Fig. 16 are
z1 ¼ 0:0019; z2 ¼ 0:0038 and z3 ¼ 0:0051.

7. Conclusion

An approach to estimate modal parameters in time domain, from output data only, using Padé
approximants associated with a selection procedure of eigenfrequencies and damping coefficients has been
presented. Using theoretical properties of the poles of Padé approximants we justify performances of the
method. Different histograms of eigenfrequencies and damping coefficients are plotted with a threshold to
determine the modal parameters of vibrating systems. This method is very suitable for the analysis of
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Fig. 12. Frequency response from first accelerometer.

Fig. 13. Frequency response from second accelerometer.
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Fig. 11. Acceleration time history from one accelerometer of the X-beam.
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mechanical systems excited by white-noise and has been applied to simulated and real data, obtained from a
mechanical system in laboratory. The results obtained underline the accuracy of the procedure in estimating
both natural frequencies and damping ratios, whose identification is always critical. The procedure presented
is relatively simple but is seen as complementing rather than replacing exiting techniques. However, some
problems are still open such as a statistical representation of the effect of the noise on the Padé approximation
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Fig. 15. Histogram of eigenfrequencies after selection for the X-beam.

Fig. 16. Histogram of damping coefficients after selection for the X-beam.

Fig. 14. Frequency response from third accelerometer.
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process and the quantification of the quality of the results. More studies involving simulated, experimental and
industrial systems are required to fully establish the method in particular in the determination of damping
coefficients.
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